Reaction of Penta-amminenitrosylruthenium with Hydroxide Ion: Formation of Penta-amminedinitrogenruthenium and cis-Tetra-amminehydroxonitrosylruthenium

By Frank Bottomley,* Steven G. Clarkson, and Enos M. R. Kiremire (Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada)

Summary When $[Ru(NH_3)_5NO]^{3+}$ reacts with OH⁻, $[Ru(NH_3)_5N_2]^{2+}$ and $[RuOH(NH_3)_4NO]^{2+}$ are obtained via the reaction: $[Ru(NH_3)_5NO]^{3+} + [RuNH_2(NH_3)_4NO]^{2+}$

 \rightarrow [Ru(NH₃)₅N₂]²⁺ + [RuOH(NH₃)₄NO]²⁺, and the [RuOH(NH₃)₄NO]²⁺ produced is largely the *cis*-isomer.

WE have previously indicated that in aqueous alkaline solution [Ru(NH₃)₅NO]³⁺ is in equilibrium with [RuNH₂- $(NH_3)_4NO]^{2+}$ and $[Ru(NH_3)_5NO_3]^+$, but when such solutions are set aside some [Ru(NH₃)₅N₂]²⁺ is produced also.¹ We speculated that this latter product is obtained by nucleophilic attack of NH₃ (liberated from one of the constituents of the equilibrium on substitution) on the co-ordinated nitrosyl of [Ru(NH₃)₅NO]³⁺. We now present evidence that $[Ru(NH_3)_5NO]^{3+}$ and OH^- form $[Ru(NH_3)_5N_2]^{2+}$ and [RuOH(NH₃)₄NO]²⁺ predominately by the reaction (1), and that the [RuOH(NH₃)₄NO]²⁺ produced is the cis-isomer.

$$[Ru(NH_3)_5NO]^{3+} + [RuNH_2(NH_3)_4NO]^{2+}$$

$$\rightarrow [Ru(NH_3)_5N_2]^{2+} + [RuOH(NH_3)_4NO]^{2+} + H^+$$
 (1)

Optimum conditions for production of [Ru(NH₃)₅N₂]²⁺ are when [Ru(NH₃)₅NO]³⁺ is set aside in 0·1m aqueous NaOH at 5 °C for 6 days. Under these conditions the product solution is a mixture of the composition: [Ru- $(NH_3)_5N_2^{2+}$, 25%; cis-[RuOH(NH₃)₄NO]²⁺, 20%; trans-[RuOH(NH₃)₄NO]²⁺, 5%; unchanged starting material 50%.† [Ru(NH₃)₅NO₂]+ is not a product. Because of the similarity of the chemical and physical properties of the constituents, we have been unable to effect a quantitative separation, and the percentage yields are therefore approximate. However, by fractional crystallization we have separated, purified, and identified all the constituents. Since the complexes listed above are the only products, and the reaction proceeds identically under air or argon, [Ru(NH₃)₅N₂]²⁺ must be formed by one or both of two routes: (i) the above-mentioned attack of liberated NH₃ on [Ru(NH₃)₅NO]³⁺;² (ii) a similar attack by the co-ordinated

NH₂- of [RuNH₂(NH₃)₄NO]²⁺. The yield of [Ru(NH₃)₅-N₂]²⁺ was essentially identical in solutions of aqueous NH. or NaOH having the same OH- concentration, and also varied with OH- concentration rather than with NH, concentration indicating (ii) as the predominant route. This was confirmed by the reaction of [Ru(15NH₃)₅14NO]3+ (0.03M) with aqueous $^{14}\text{NH}_3$ (10M). Even under these conditions, which strongly favour direct attack by NH3, the $[Ru(NH_3)_5N_2]^{2+}$ produced contained ca. 50% ¹⁴N¹⁵N and 50% 14N14N {determined by mass-spectrometric analysis of the gas evolved on heating the precipitated [Ru(NH₃)₅N₂]-Br₂ in vacuo }. Under conditions where there is no added NH3 it is unlikely that direct attack by NH3 (if any is liberated from the complex) occurs.

Under our conditions there is some cis- to trans-isomerization of [RuOH(NH₃)₄NO]²⁺, but no trans- to cis-isomerization.3 Hence the cis-[RuOH(NH₃)₄NO]²⁺ must result because (a) the attacking [RuNH₂(NH₃)₄NO]²⁺ has the cisconfiguration; or (b) there is a stereochemical rearrangement involving a 5-co-ordinate species such as [Ru(NH₈)₄-NO]3+ produced during attack by a trans-amido complex. Though both possibilities are unprecedented in this area, (a) is somewhat favoured over (b) because under our conditions substitution isomerisation is very slow.

We thank the National Research Council of Canada and the University of New Brunswick Research Fund for financial support, Johnson, Matthey and Mallory, Montreal, for the loan of ruthenium, and the Canadian International Development Agency for a Commonwealth Scholarship (to E.M.R.K.).

(Received, 6th November 1974; Com. 1357.)

† The products were identified by their chemical and physical properties, which are all known from the literature.

¹ F. Bottomley and J. R. Crawford, J.C.S. Dalton, 1972, 2145.

² Formation of N_2 by attack of NH₃ on co-ordinated NO occurs with $[IrX_5NO]^-$ (X = Cl, Br); F. Bottomley, S. G. Clarkson, and S. B. Tong, *J.C.S. Daiton*, in the press. For a related reaction see W. L. Bowden, W. F. Little, and T. J. Meyer, *J. Amer. Chem. Soc.*, 1973, 95, 5084. It has been shown that $[Ru(NH_3)_5NO]^{3+}$ is readily attacked by nucleophiles; see ref. 1 and F. Bottomley and J. R. Crawford, *J. Amer. Chem. Soc.*, 1972, 94, 9092.

³ S. Pell and J. N. Armor, *Inorg. Chem.*, 1973, 12, 873. These workers note there is almost complete *cis*- to *trans*-isomerisation of [RuOH(NH₃)₄NO]²⁺ in warm alkaline solutions, an observation confirmed by us. However, at 5 °C this isomerisation proceeds only

very slowly.